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ABSTRACT 

The Schiff bases I, II and III were prepared using a solid state reaction technique. Their 
structures were studied using elemental analysis, IR and electronic spectra. The solid state 
reactions of preparation were also studied by differential thermal analysis (DTA), X-ray 
diffraction and IR spectroscopy. The energies of activation and the orders of the reactions 
were determined. 

INTRODUCTION 

Metal complexes of Schiff bases have contributed widely to the inorganic 
chemistry of chelate systems. In the complexes containing m-conjugated 
macrocyclic ligands the reactivity and the redox potential of the central 
metal are very sensitive to the nature of the chelate ring. However, few 
studies have been devoted to complexes involving non-symmetrical bases. In 
general, the known non-symmetrical diimines have been obtained by a 
template synthesis and have not been isolated in the free (non-coordinated) 
state [l-4]. Recently, Costes et al. [5J have reported a reliable procedure in 
solution for obtaining non-symmetrical diimines involving ethylenedia~ne, 
acetylacetone, salicylaldehyde and 2-hydroxyacetophenone. The redox 
potential El,1 related to the reaction Co”’ 4 Co” in the non-symmetrical 
complexes obtained was measured [5]. The data emphasize the usefulness of 
non-symmetrical ligands in affording a convenient way of varying the 
properties of complexes. Because of our interest in solid reactions, in this 
work, a reliable, simple and economic method for obtaining non-sy~etri- 
cat dim-tines is reported using a solid state reaction. The thermal behaviour 
of the reaction and the products obtained are investigated. 

EXPERIMENTAL 

Preparation of iigands 

The Schiff bases I, II and III were prepared using a solid state reaction 
technique as follows. 
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Ligand I was prepared by mixing equimolar ratios (1: 2) of 1,5-di- 
~nonaphth~ene and 2,6-diacetylpy~dine. The mixture was heated to 
90°C for 15 min in a drying oven. A green compound was obtained. 
Analysis gave: C, 75.5%; H, 5.4%; N, 13.6%. Calculated for C&H,,N,O: C, 
75.2%; H, 5.6%; N, 13.9%. Ligands II and III were prepared by mixing 
equimolar ratios (1: 1) of ligand I with 2-hydroxy-l-napthaldehyde and 
2,4_dihydroxybenzaldehyde respectively. The mixtures were heated to 90 o C 
for ligand II and to llO” C for ligand III for 30 min. Red and orange 
compounds were obtained respectively. Analysis of ligand II gave: C, 79.4%; 
H, 5.1%; N, 8.9%. Calculated for C,,H,,N,O,: C, 78.7%; H, 5.0%; N, 9.2%. 
Analysis of ligand III gave: C, 72.9%; H, 5.0%; N, 9.6%. Calculated for 
C,,HZ1N303: C, 73.7%; H, 5.0%; N, 9.9%. 

The elemental analyses were carried out at National Research Centre 
Dokki, Cairo, Egypt. IR spectra were measured as KBr discs using a 
Perk&Elmer 598 ~~0-2~ cm-‘) spectrophotometer. Electronic spectra 
were recorded in CHCl, using a Unicam SP 100 spectrophotometer. Ther- 
mal analysis was carried out using a Shimadzu XD-30 thermal analyser. 
X-ray powder diffraction was recorded with a Shimadzu XD-3 diffractome- 
ter using the Cu Ken line. 

RESULTS AND DISCUSSION 

IR spectra 

Table 1 shows the IR spectra and their assignment for ligands I, II and 
III. For ligand I the well-defined bands at about 3200-3410 cm-‘, 1690 
cm-’ and 1635 cm- ’ are assigned to ~(Nfl,), v(C=O) and 6(NH,) respec- 
tively [6]. This indicates the formation of a “half unit” of Schiff base with a 
free NH, group (see structure above). The spectra of ligands II and III show 
characteristic bands at 3400 cm-‘, 1690 cm-’ and 1610 cm-‘. These are 
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TABLE 1 

IR spectra of Schiff bases (cm-‘) 

Assignment I II III 

4NHd 

@fI) 
v(=CH) 
Y(Ci=O) 

S(NH,) 
v(C=N) 
Aromatic rings 

MCH,) 
UCH,) 

i 3410 3310 3200 m m m 
- 

3060 w 
1690 s 
1635 vs 
covered by &NH,) 
1580 m 
1420 m 
1350 s 

_ 

3400 br 3400 br 
3060 w 3060 VW 
1690 s 1690 s 

- - 

1610 vs 1610 vs 
1580 w 1580 sh 
1420 sh 1430 w 
1350 m 1350 m 

m, medium; w, weak; s, strong; vs, very strong; sh, shoulder. 

assigned to v(OH), v(C=O) and v(C=N) respectively [6,73. The disap- 
pearance of the NH, from the spectra of II and III (Table 1) confirms the 
formation of the “half unit” of the Schiff base (I), while the appearance of 
OH and C=O in their spectra confirm the formation of non-s~rnet~c 
Schiff bases II and III (see structures above). 

Electronic spectra 

The electronic spectra of the ligands show two bands (Table 2, Fig. 1) 
around 315-320 nm and 365-390 nm. These are assigned to n--r* [6] and 
charge transfer (CT) [8,9]. The appearance of a new band at 365-395 nm 
(CT band) in the spectra of the ligands in comparison with the bands in the 
spectra of the reactants emphasizes the formation of ligands. Elemental 
analysis, IR and electronic spectra measurements confirm the structures 
given in the experimental section. 

Thermal studies 

The solid state reactions for the preparation of ligands I, II and III were 
studied using a differential thermal analyser. Figure 2 shows the thermo- 

TABLE 2 

The electronic spectra of the Schiff bases in CHCl, (nm) 

Assignment 

n-n* 
CT 

I II III 

320 s 315 m 315 sh 
365 sh 390m 365 sh 

475 sh 
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amined, and numerical methods derived for calculating these using trap 
depth data. Chen suggested that, even if S was temperature dependent, i.e., 
S a T-” where - 2 < a < + 2, the error would not be greater than + 10%. 

A second method devised by Chen is a “general-order” method [24], i.e., 
no assumptions are made about the reaction order. The method combines 
the work of several authors and a mathematical analysis. A method for 
calculating trap depths using T, and the low-temperature half-width was 
found by linear interpolation between known formulae for the first- and 
second-order kinetics. A correction factor is also introduced for 
temperature-dependent frequency factors as in the modified Keating model. 

The general equation for E introduced is 

E = C,(2kT,/a) - b,(2kT,) 

where b,, c, are constants, and (Y is 7, S or w 

C, = 1.51 + 3(& - 0.42); b, = 1.58 + 4.2(& - 0.42) (low T profile) 

C, = 0.976 + 7.3( PIN - 0.42) ; b, = 0 (high T profile) 

C, = 2.52 + 10.2 (& - 0.42); b, - 1.0 (overall shape) 

pi is the geometry or shape factor for ‘the peak, and is equal to S/w, where 
6 = T2 - T,, w = T, - T,, 7 = T, - Tl. p; is a good approximation to the 
factor ps = n,/n, (see earlier). 

Characteristic values of & were found for first-order peaks (& = 0.42) 
and second-order peaks (p.L = 0.52). The method using T appears to be the 
most accurate due to the slight dependence of this term on kinetic order (see 
multiplier term on front of bracket). However, problems arise with overlap- 
ping peaks which make the determination of & difficult. 

The problem of peak overlap and complex spectra was discussed by 
Khare and Ranade [25] who used Chen’s method [24] and Lushchick’s [15] 
method of separating peaks. Two cases were discussed: 

(1) in which the position of the peak maximum is unaffected by the 
neighbouring peaks; 

(2) in which the peak maximum is affected by neighbouring peaks. 
Khare and Ranade used the initial rise method [4] for the first peak; this 

method is roughly independent of kinetic order. They then used Halperin 
and Braner’s formula [16] as modified by Chen [18], to calculate E for the 
first- and second-order kinetics. These values were compared with those 
obtained by the initial rise method for each peak in turn. The nearest value 
of E to the initial rise value indicated the kinetic order. The analysis was 
started on either the high- or low-temperature side of the peak, wherever 
interference from other peaks was negligible. 
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Metho& involving area measurement 

Muntoni et al. [26] devised an area measurement method which is similar 
to that of Urbach [27] and which is derived from the work of Lushchick [15] 
and Anatov-Romanovski [28]. 

In l/S(T)” = E/kT+ C 

where S(T) is the area under the curve from T to Tf (the latter being the 
temperature at the end of the glow curve), (Y is a number representing kinetic 
order. Values of E obtained are similar to those from Muntoni et al.‘s 
method. The model and method are complex and require well-defined 
thermoluminescent processes. 

Isothermal decay [29,30] 

In this method, the decay of thermoluminescence is measured over a 
period of time with the sample held at constant temperature. 

For first-order kinetics 

I(T) = n,S exp( E/kT) exp[ -St exp( E/kT)] 

where t is the time in seconds and the other terms have been previously 
defined. 

In I(T) = In n,S - St exp( - E/kT) - (E/kt) 

If In I is plotted vs. t, a straight line of slope S exp( - E/kt) should 
result. If the experiment is carried out at two different temperatures, T1 and 
T2, and slopes J4i and M, are measured, then 

In M,/M, = (l/T, - l/T,)( - E/kT) 

and E and S can be determined free of assumptions about the temperature 
dependence of S. It is also claimed that many of the problems associated 
with peak overlap are removed [30]. This may not be correct since it is 
possible that at longer times other processes may become important, giving 
rise to changes of slope. 

ELECTRON RETRAPPING 

Thermal excitation of a trapped electron causes it to pass over an energy 
barrier. In pure materials the positive hole left by the excitation step is often 
the only possible combination site for the now free electron. In most 
materials, however, other traps of differing depths exist, and the liberated 
electron may become associated with one of these. Such retrapping leads to 
delay in the thermoluminescence, since the total process becomes multistage 
rather than single stage. 
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One obvious effect of retrapping is that the intensity of luminescence will 
be reduced when compared with that expected in the absence of retrapping. 
These effects were used by Hoogenstraten [13], who compared “built-up” 
curves (i.e., those produced by exciting the material under study with 
insufficient quanta of radiation to reach saturation) with those from the fully 
excited curve. In the case of a single glow peak with traps of a single depth 
and following first-order kinetics, it is to be expected that the built-up curves 
should be fully conformable with the fully excited peak and also have the 
same T, value. If the kinetics are not of first order, then the concentration 
of filled traps will also influence the shape and position of the peak. 

Garlick and Gibson [4] examined the retrapping phenomenon by: 
(i) curve-fitting methods; 
(ii) isothermal decay; 
(iii) the use of different intensities of exciting radiation; and 
(iv) the proportionality of trap depth to T,. 

In (i) the area under the glow curve is proportional to the number of 
electrons trapped, but the curve shape is dependent on n ,, when retrapping is 
important. For (ii) when retrapping is negligible, the curve height at any 
point is proportional to n, which is in turn proportional to the area under 
the curve at that point. The latter point only applies for a single peak due to 
a single-valued trap depth; (iii) using the initial rise method [4], for no 
retrapping 

I = n,S exp( -E/KT) 

while for retrapping 

I= (ni/n)sexp(-E/W) 

i.e., intensity is proportional to the total concentration of two types of trap; 
(iv) when retrapping occurs then T, is proportional to the trap depth for 
fixed values of S, n, and p. 

Hoogenstraten [13] extended Garlick and Gibson’s methods and suggested 
that a kinetic order might be deduced as follows 

g = I,.,,/& exp E/kT 

where g is a factor lying between (CJC,,) and ( C,,.,/CO)*, C, = the con- 
centration of filled traps at T,, Co = concentration of filled traps at the start 
of the experiment, 1, = intensity of T,, and 1, is the intercept on the In I 
axis of the initial rise plot, (Cm/C,) and (C,/C,)* are the limits for the 
mono-molecular and bimolecular cases, respectively. Since C,,,/C,, = 0.5, the 
value of g may give an indication of the kinetics. The method is claimed to 
be useful if the depth distribution is narrow. 
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THE COMPARISON 

The numerical data used in the comparison were derived from the 
spectrum shown in Fig. 3, which is from a sample of tricalcium aluminate, 
Ca, Al,O,; this was produced as part of a TL and ESR study of various 
synthetic cement minerals [32]. Table 1 gives, for peak 1, the calculated trap 
depths, frequency factors, etc., grouped according to the method of calcula- 
tion (initial rise, T,, etc.) and also according to the “order” assumed by the 
equations. The Halperin and Braner calculation has been limited to the case 
where p = 1. The Table shows the predominance of first-order kinetics used 
throughout the equations. Most of these are derived in some way from 
Randall and Wilkins’ equation. Only 30% of the equations attempt to derive 
second-order kinetic parameters. However, since all of the equations use the 
same numbers (T,, T,, T2), there is no way to distinguish properly between 
the two mechanisms on the basis of the numbers themselves. Only Chen’s 
general-order method and the isothermal method are capable of analysing 
curve shape to determine kinetic order separately from the determination of 
E and S. For the curve in Fig. 3, this analysis gives a & value of 0.42, which 
strongly suggests a first-order process. This being the case, all of the 
second-order values can be neglected. 

Examination of the first-order values indicates a considerable range of 
trap depths (0.83-1.55 ev). Those methods using T, give a range of values 
whereas those using peak shape give a remarkably uniform value in the 
middle of the range. These latter methods, therefore, have a double ad- 
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Fig. 3. Experimental glow curve for synthetic tricalcium aluminate. 
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TABLE 1 

Kinetic parameters derived from the spectrum of tricalcium aluminate 

Peak 1 E(1) S(l) E(2) S(2) E S 
General 

Initial rise [4J 

Peak maximum 
Randall and Wilkins [8] 
Booth [9], Bohun [12] 
Schon [ 111 
Hoogenstraten [ 131 

0.83 

1.55 lOE13 assumed 
1.02 1OEll 
0.96 
1.44 lOE17 

Peak shape 
Lushchick [15] 
Halperin and Braner [16] 
Chen [18] 
Grossweiner [19] 
Keating [21] 

E, 
E8 
EU 

Khare and Ranade [25] 

1.07 1.87 
1.12 2.29 
1.11 lOE12 1.59 lOE14 0.40 
1.13 lOE12 
1.15 

1.14 
1.11 lOE12 0.42 
1.09 

1.12 lOE12 1.33 

Peak area [26] 

Isothermal [29,30] 

0.91 1.76 

0.97 lOE15 

vantage, in that some indication of “order” is given and, as a group, they 
give consistent values from a single set of numbers. They also use a number 
of ways to arrive at a result, i.e., T,, high- and low-temperature profiles, and, 
therefore, the consistency is double encouraging. If the consistency of these 
analyses is good, what of the accuracy of the trap depth they indicate? 

The high values are produced from Hoogenstraten’s [13] and Randall and 
Wilkins’ models [8]. The former is generally assumed to be almost indepen- 
dent of mechanistic assumptions, while the latter is dependent on an 
assumed value for S. The value assumed in this case is 1013. If these high 
values are correct then lower values can be accounted for by postulating a 
range of trap depths, rather than a single value. However, closer analysis 
using Garlick and Gibsons’s method [4], suggests that if such a range exists, 
it is narrow. It is therefore unlikely that this is the correct reason for the 
lower values. Hoogenstraten’s analysis requires absolute intensity values 
which were not used in this case. Both of these trap depth values were 
calculated by using different heating rates which should produce a shift in 
T, (see Appendix). The variation in T, was small and this may cause a large 
error in the trap depth. 

The initial rise method produced a low value (0.83 ev>. The shortcomings 
of this method have already been pointed out. Repeated runs at higher 
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photomultiplier sensitivities gave a wide range of trap depths, down to 0.02 
eV, which does not argue well for the accuracy of the value given here. The 
peak area method is known to be inaccurate when overlapping peaks are 
present, while the isothermal method suggested an order slightly greater than 
unity overall. At low levels of recombination the order was close to unity, 
but increased to about 1.5 at 50% recombination. This method is also known 
to be inaccurate when overlapping peaks are present. If the degree of overlap 
present in the glow curve shown in Fig. 3 does contribute to the error in the 
derived trap depths, this is an indication of the limits in the methods used. It 
is possible, therefore, to suggest reasons for rejecting the high and low values 
of trap depth, but these are not overwhelmingly convincing. 

A similar analysis on peak 2 in Fig. 3 indicates a first-order process with a 
trap depth of 1.2 eV. This value is subject to the same arguments and 
difficulties as is peak 1, except that the initial rise method produces a very 
high value of 2.2 eV, due to peak overlap on the leading edge. 

CONCLUSIONS 

It can be seen that, for the relatively simple glow curve shown in Fig. 3, to 
decide on an order for the thermoluminescence process is straightforward, 
but it is much more difficult to decide on the numerical value of the trap 
depth. Obviously, part of this difficulty lies in the relatively large number of 
models considered here. Most published work on TL and trap depth studies 
seems to use only a single model [32]. As with much thermal methods work, 
there is a trade-off between time spent on analysis and the number of 
assumptions made. If a single method is ‘to be used in thermoluminescence, 
then the Chen general-order method is probably the most useful, in that 
reaction order, trap depth and frequency factor can be determined. However, 
as is the case for most of the models in the literature, a single order of 
reaction is assumed to operate throughout the whole process. This may not 
be the case (as is suggested here), and the isothermal method will generate all 
of the parameters required, and will also give information on fractional order 
processes, but only at the expense of time taken to follow several runs at 
constant temperature. 

APPENDIX 

To account for a single TL peak, Halperin and Braner [16] devised a set of 
three simultaneous equations 

(a) I = -dmjdt = A,Mn, 

i.e., intensity of radiation is equal to the decay of holes, which is again 
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proportional to the recombination of holes and free electrons. 

(b) -dn/dt = Sn exp( -E/kT) -An(N- n)n, 

i.e., decay of electrons in traps equals rate of ejection of trapped electrons 
less those electrons being retrapped. 

(c) dn,/dt = dm/dt - dn/dt 

i.e., change of concentration of free electrons = change in number of holes 
less the change in ,the number of trapped electrons, where N = concentration 
of traps (cme3); n = concentration of electrons in traps (cme3); n, = 
concentration of free electrons in the conduction band (cmm3); A, and A, 
are the recombination and retrapping probabilities (cm3 set-‘), and m is the 
concentration of holes in luminescent centres. 

Assuming that the number of free electrons is low (n, -=x n) but reasona- 
bly constant (dn,/dt +z dn/dt) then 

I= -dm/dt=Snexp(-E/kt)A,m/[A,M+A.(N-n)] 

If A,,$ -=x A,( N - n), i.e., retrapping is negligible, this equation reduces to 

I= -dm/dt = Sn exp(-E/kT) 0) 

which is Randall and Wilkins’ equation for first-order kinetics. 
It follows, also, that if retrapping is dominant, then 

A,(N - n) B A,M; N B n 

then 

I= -dn/dt = (X4,/NA,)n* exp( -E/kT) 

which is the equation for second order kinetics with 

S = (SA,/NA*) 

It follows, therefore, that the appearance of first- or second-order kinetics 
is only in special, limiting cases and that other intermediate “orders” may be 
observed. 

In TL, a rising-temperature programme is commonly used: T(t) = To + Pt, 
where /3 = heating rate (K s-l). It is possible to integrate eqn. (1) between 
the temperature limits Ti and Tf and the results represent the TL curve 

I(T) = n,S exp( - EkT) exp 
[ 

- J”c S//3) exp( - EkT’)dT’ 
I 

(2) 
T, 

Solution of this equation is laborious and the equations given here 
represent other approaches to its solution, e.g., at T,: dl/dT = 0. This gives 

BE/( kT2) = S exp( - E/kT,) (3) 

which, when rearranged, is Randall and Wilkins’ equation. Rearrangement 
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of eqn. (3) gives 

BE/Sk = Tz exp( - E/kT,) 

which indicates that as j3 varies T, must also vary; and this forms the basis 
of the methods which use variation in heating rate, /3, to determine E 
without the requirement of S. 
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